Sunday, 23 June 2024

Decoding SAS: A Guide to Python Equivalents

 

                                                Photo by Surface on Unsplash

 

As more people migrate from SAS to free open-source languages like Python, there could be a need to re-code SAS programs into the open-source language. This article seeks to provide a cheatsheet of SAS-to-Python Equivalent codes for some more complex procedures like Proc SQL, Proc Transpose. Refer to this PDF file for the cheat sheet:

 Python-to-SAS Equivalents

Python Equivalent of SAS Merge

 

                                                    Photo by Sora Sagano on Unsplash

While Python offers several merge options like pandas.merge, pandas.concat, and join; none of them can replicate the exact same output of SAS Merge.

Some differences between SAS and Python Merge…

  1. For SAS when merging datasets with overlapping columns, it will take the column in the right-most dataset. While for Python, overlapping columns will be suffixed to distinguish them.
  2. For SAS if df_left has more rows than df_right for a merge key, the non-overlapping columns from df_right for the extra rows will be filled with the data of the last row in df_right. For Python, however, it will do a Cartesian Join (Cross Join).

The below diagrams illustrates the differences.

For SAS merge, the overlapping columns age and ht take the values from df_right for Obs 1–2. For the non-overlapping column from df_right (sales_right), Obs 3 takes the same value as Obs 2.


For Python merge, the overlapping columns age and ht are suffixed with “_left” for the columns from df_left. Also, a cartesian join is performed resulting in 3 x 2 = 6 observations.

 


Thus I have come up with a function in Python to replicate SAS Merge.



import pandas as pd

import numpy as np

 

# =============================================================================

# SOME DIFFERENCES BETWEEN SAS & PYTHON MERGE

 

# For SAS, when merging datasets with overlapping columns, it will take the column in the right-most dataset

# For Python, overlapping columns will be suffixed to distinguish them

#

# For SAS if df_left has > rows than df_right, The non-overlapping columns from df_right, for the extra rows will be filled with the data of the last row in df_right.

# But in Python, it will do a Cartesian Join (Cross Join)

# =============================================================================

 

# =============================================================================

# INSTRUCTIONS FOR SAS_merge

 

# The 1st 2 args are the left and right dfs

# The 3rd arg is the HOW of the merge. Similar to SAS merge, the options are

    # 'if df_left'

    # 'if df_right'

    # 'if df_left and df_right'

    # '' # this is the SAS merge without the If statement

    # 'if df_left NOT =df_right'

    # 'if df_right NOT =df_left'

# The 4th arg is the ind. Put 'Y' if u want the variable '_merge' (this tells which df the record is from), else put 'N'

# The 5th arg is the merge key. It is of variable length. If merging on >1 variable separate the arg by ,

# =============================================================================

 

def SAS_merge (df_left_copy, df_right_copy, how, ind, *merge_key):

    df_left=df_left_copy.copy() # this is to prevent the original df being modified in the function. Note that all df will be modified in function even if not returned.

    df_right=df_right_copy.copy() # this is to prevent the original df being modified in the function. Note that all df will be modified in function even if not returned.

   

    df_left = df_left [df_left.columns.dropna()] #Drop columns with Nan header, or else there will  be errors

    df_right = df_right [df_right.columns.dropna()]

   

    df_left_subset_merge=pd.DataFrame()

    df_right_subset_merge=pd.DataFrame()

     

    df_left['KEY']=''

    df_right['KEY']=''

   

    for col in merge_key:

        df_left[col] = df_left[col].fillna('')

        df_right[col] = df_right[col].fillna('')

      

    for col in merge_key:

        df_left['KEY'] = df_left[['KEY', col]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)

        df_right['KEY'] = df_right[['KEY', col]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)

       

    

    if how=='if df_left' or how=='if df_right' or how=='if df_left and df_right' or how=='':

        df_left.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

        df_right.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

             

        #check_df_left = df_left['KEY'].to_list()

        #check_df_right = df_right['KEY'].to_list()

        #common_key=list(set(check_df_left) & set(check_df_right)) # find the unique key that exists in both df

       

        col_common =list(np.intersect1d(df_left.columns, df_right.columns))

        col_common.remove('KEY')

        for col in merge_key:

            col_common.remove(col)

       

        col_missing_right = df_right.columns.difference(df_left.columns).tolist() # find the columns in df_right that are missing from df_left

        col_missing_left = df_left.columns.difference(df_right.columns).tolist() # find the columns in df_left that are missing from df_right

       

        # find the common key in both df and their number of occurrence by inner merge

        check_df_left=pd.DataFrame(df_left.value_counts(subset=['KEY'], dropna=True)) # KEY becomes the index in the df

        check_df_right=pd.DataFrame(df_right.value_counts(subset=['KEY'], dropna=True))

       

        merge_check=pd.merge(check_df_left, check_df_right, how='inner', left_index=True, right_index=True).reset_index(drop=False)

        merge_left=merge_check[(merge_check['0_x']>=merge_check['0_y']) & (merge_check['0_y']>1)] #'0_x' is the num of occurrence in left df. issues occur if '0_y'>1 as Python does a cartesian merge

        merge_right=merge_check[(merge_check['0_x']<=merge_check['0_y']) & (merge_check['0_x']>1)]

           

 

        for c in merge_left['KEY'].to_list():

       

            df_left_key=df_left[df_left['KEY']==c].shape[0]

            df_right_key=df_right[df_right['KEY']==c].shape[0]

       

            #row_list=merge[merge['KEY']==c].index.tolist()

            df_left_subset=df_left[df_left['KEY']==c].reset_index(drop=True)

            df_left=df_left[df_left['KEY']!=c]

           

            df_right_subset=df_right[df_right['KEY']==c].reset_index(drop=True)

            df_right=df_right[df_right['KEY']!=c]

           

            # for overlapping columns fill df_left with values from df_right

            #df_left_subset[list(np.intersect1d(df_left_subset.columns, df_right_subset.columns))]=df_right_subset[list(np.intersect1d(df_left_subset.columns, df_right_subset.columns))]

            for col in col_common:

                for i in range (0, df_right_key):

                    df_left_subset.iloc[i, df_left_subset.columns.get_loc(col)]=df_right_subset.iloc[i, df_right_subset.columns.get_loc(col)]

           

            

            for col in col_missing_right:

                df_left_subset[col]=df_right_subset[col] # for this to work, both df must have same index

                # for SAS if df_left has > rows than df_right. The columns from df_right, for the extra rows will be filled with the data of the last row in df_right.

                for i in range (df_right_key, df_left_key):

                    df_left_subset.iloc[i, df_left_subset.columns.get_loc(col)]=df_left_subset.iloc[i-1, df_left_subset.columns.get_loc(col)]

       

            df_left_subset_merge = pd.concat([df_left_subset_merge, df_left_subset], axis = 0, ignore_index=True)

            

     

        for c in merge_right['KEY'].to_list():

           

            df_left_key=df_left[df_left['KEY']==c].shape[0]

            df_right_key=df_right[df_right['KEY']==c].shape[0]

       

            #row_list=merge[merge['KEY']==c].index.tolist()

            df_left_subset=df_left[df_left['KEY']==c].reset_index(drop=True)

            df_left=df_left[df_left['KEY']!=c]

           

            df_right_subset=df_right[df_right['KEY']==c].reset_index(drop=True)

            df_right=df_right[df_right['KEY']!=c]

           

            

            for col in col_missing_left:

                df_right_subset[col]=df_left_subset[col] # for this to work, both df must have same index

                # for SAS if df_right has > rows than df_left. The columns from df_left, for the extra rows will be filled with the data of the last row in df_left.

                for i in range (df_left_key, df_right_key):

                    df_right_subset.iloc[i, df_right_subset.columns.get_loc(col)]=df_right_subset.iloc[i-1, df_right_subset.columns.get_loc(col)]

       

            df_right_subset_merge = pd.concat([df_right_subset_merge, df_right_subset], axis = 0, ignore_index=True)

 

       

                    

 

        if how=='if df_left':

            merge = pd.merge(df_left, df_right, how='left', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

            col_ls=[col[:-5] for col in merge.columns if col.endswith('_left')] 

            for col in col_ls:

                merge.loc[merge['_merge']=='left_only', col]=merge.loc[merge['_merge']=='left_only', col+'_left']

       

        elif how=='if df_right':

            merge = pd.merge(df_left, df_right, how='right', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

       

        elif how=='if df_left and df_right':

            merge = pd.merge(df_left, df_right, how='inner', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

           

        elif how=='':

            merge = pd.merge(df_left, df_right, how='outer', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

            col_ls=[col[:-5] for col in merge.columns if col.endswith('_left')] 

            for col in col_ls:

                merge.loc[merge['_merge']=='left_only', col]=merge.loc[merge['_merge']=='left_only', col+'_left']

               

        merge = pd.concat([merge, df_left_subset_merge, df_right_subset_merge], axis = 0)

        merge = merge.loc[:, ~merge.columns.str.startswith('KEY')]

        merge ['_merge'].fillna('both', inplace=True) # these are the rows from df_left_subset_merge, df_right_subset_merge

        merge.drop(merge.filter(regex='_left$').columns, axis=1, inplace=True, errors='ignore')

        if ind=='N':

            merge.drop(['_merge'], axis=1, inplace=True, errors='ignore')

        merge.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

       

 

 

    elif how=='if df_left NOT =df_right' or how=='if df_right NOT =df_left':

           

        df_left_subset_merge = df_left[~df_left['KEY'].isin(df_right['KEY'])]

        df_right_subset_merge = df_right[~df_right['KEY'].isin(df_left['KEY'])]

        merge = pd.concat([df_left_subset_merge, df_right_subset_merge], axis = 0)

        merge = merge.loc[:, ~merge.columns.str.startswith('KEY')]

        if ind=='N':

            merge.drop(['_merge'], axis=1, inplace=True, errors='ignore')

        merge.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

 

    return merge

 
# Toy Dataset to Test Python Merge, Join, Concat vs SAS Merge

data = {      

"name": ['dick_both', 'sam_both', 'sam_both', 'sam_both','cat_both','susan_both', 'susan_both', 'john_both', 'john_both', 'tom_left', 'tom_left'],

"age": [20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20],

"ht": [200, 200, 200, 200, 200, 200, 200,  200, 200,  200, 200],

"sales_l": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

}

 

left = pd.DataFrame(data)

 

data = {

      "name": ['dick_both', 'sam_both', 'sam_both','cat_both', 'cat_both', 'susan_both', 'john_both', 'john_both', 'john_both', 'harry_right', 'harry_right' ],

      "age": [50, 50, 50, 50,50, 50, 50, 50, 50, 50, 50],

      "ht": [5, 5, 5, 5,5, 5, 5,  5, 5, 5,  5],

      "sales_r": [51, 52, 53, 54,55, 56, 57, 58, 59, 60, 61]

        }

 

right = pd.DataFrame(data)

 

 

merge = pd.merge(left, right, how='right', on=['name'], suffixes=('_left', ''), sort=True)

print('PYTHON MERGE')

print(merge)

 

concat=pd.concat([left, right], axis=1,join='inner')

print('PYTHON CONCAT')

print(concat)

 

join=left.join(right, how='left', lsuffix='_left', rsuffix='')

print('PYTHON JOIN')

print(join)  

merge=SAS_merge (left, right,'if df_left', 'N', 'name')

 

print('SAS MERGE')

print(merge)

Thursday, 20 June 2024

Python Equivalent of SAS Proc Summary

                                              Photo by Clément Hélardot on Unsplash

While Python is a power language, it may not have ready-to-use functions that replicates SAS procedure exactly. This article provides a created function SAS_pro_summary that exactly replicates most of SAS Proc Summary procedure.

import pandas as pd
import numpy as np
import math
from itertools import combinations
from statsmodels.stats.weightstats import DescrStatsW



# =============================================================================
# INSTRUCTIONS

# For stat, the options are all or a combinations of the below
# 'sum', 'sum_wt', 'count', 'min', 'max', 'mean', 'mean_wt','var', 'var_wt', np.std, 'std_wt'

# class_1 are the CLASS variables in SAS Proc Summary 
# For the variables in class_1, they should be in the same order as in the SAS proc summary code. Otherwise, the '_TYPE_' will differ

# var are the VAR variables in SAS Proc Summary 

# id_1 are the ID variables in SAS Proc Summary. Leave the [] empty if ID variable is not needed

# weight is the WEIGHT variable in SAS Proc Summary. Leave the [] empty if WEIGHT variable is not needed. 

# nway='Y' means the same as including nway in SAS Proc Summary. nway='N' means NOT to include

# missing='Y' means the same as including missing in SAS Proc Summary. missing='N' means NOT to include

# If only want the FREQ of the class variables, leave VAR empty and put 'count' in stat

# =============================================================================


def SAS_pro_summary (df_copy, stat=[], class_1=[], var=[], id_1=[], weight=[], nway='N', missing='Y'):
    df=df_copy.copy() # this is to prevent the original df being modified in the function. Note that all df will be modified in function even if not returned.
    
    df_final_gpby=pd.DataFrame()
    class_combinations = []
    code_list = []
    
    df['_FREQ_']=''
    df['_TYPE_']=''
    df['KEY']=''
    
    # This is a check in case users include the same variables in both class_1 & id_1. It isn't right to append the common class variables with the id
    # Find the common items
    common_items = list(set(id_1) & set(class_1))

    # Remove the common items from id_1
    id_1 = [item for item in id_1 if item not in common_items]
    
    if missing=='Y':
        pass
    elif missing=='N':
        for col in class_1:
            df[col].replace('', np.nan, inplace=True)
        df = df.dropna(subset=class_1, how='any', axis=0) # SAS will drop the whole row as long as any class variables has nan
   
    #for weighted sum
    if weight and 'sum_wt' in stat:
        df_weighted=df.copy()
        for n in var:
        #   df_weighted.dropna(subset=[n, weight[0]], axis=0, inplace=True)
            df_weighted[n]=df_weighted[n]*df_weighted[weight[0]]
          
             
    # this is for '_TYPE_'
    for n in range (1, len(class_1)+1):
        code_list.append('CODE_'+ str(n))
        
        
    for n in range(len(class_1) + 1):
      class_combinations += list(combinations(class_1, n)) # Create all the different permutation of the class variables
    class_combinations.pop(0) # remove  the empty permutation
   
    id_1.append('KEY') 
    for s in stat:
        df_TOTAL=pd.DataFrame()
        df_total_gpby=pd.DataFrame()
        df_unique=pd.DataFrame()
        var_dict={'_FREQ_': 'count'}
        
        df_gpby_variance_merged=pd.DataFrame()
        df_gpby_variance_merged['KEY']=''
        
        
        for n in var:
            if s=='sum_wt' or s=='sum':
                var_dict[n]=lambda x: np.nan if x.isna().all() else x.sum() # sum will return 0 even if all summed items are np.nan. So we use this function to return nan
                #var_dict[n]='sum'
            elif s=='mean_wt':
                #mean_wt_fn = lambda x: np.ma.average(x.dropna(), weights=df.loc[x.dropna().index, weight[0]]) # function to compute weighted mean and dropna
                mean_wt_fn = lambda x: np.ma.average(x, weights=df.loc[x.index, weight[0]]) 
                var_dict[n]=mean_wt_fn
            elif s=='var_wt' or s=='std_wt':
               pass
            else:
                var_dict[n]=s
                   
        # this is to create the stat based on the entire df
        if s=='sum_wt':
            df_TOTAL=pd.DataFrame(df_weighted.agg(var_dict))
            

        elif s=='var_wt' or s=='std_wt' or s=='mean_wt':   
            df_TOTAL=pd.DataFrame(df.agg(var_dict))
            for n in var:
                df_copy=df.copy()
                df_copy.dropna(subset=[n, weight[0]], how='any', axis=0, inplace=True) # Need to drop rows with nan as the function will return nan even if there is some valid values
    
                if s=='var_wt':
                    df_TOTAL.loc[n]=(DescrStatsW(df_copy[n], weights=df_copy[weight[0]], ddof=10).var)*10
                elif s=='std_wt':
                    df_TOTAL.loc[n]=math.sqrt((DescrStatsW(df_copy[n], weights=df_copy[weight[0]], ddof=10).var)*10)
                elif s=='mean_wt':
                    mean_wt_fn_subset = lambda x: np.ma.average(x, weights=df_copy.loc[x.index, weight[0]]) 
                    var_val=df_copy[n].agg({n: mean_wt_fn_subset })
                    df_TOTAL.loc[n]=var_val[0]
                             
        else:
            df_TOTAL=pd.DataFrame(df.agg(var_dict))
            
            
        df_TOTAL = df_TOTAL.T
        df_TOTAL['_TYPE_']=0
        if s!=np.std:
            df_TOTAL['_STAT_']=s
        elif s==np.std:
            df_TOTAL['_STAT_']='std'
        df.sort_values(by=id_1, kind='stable', ignore_index=True, inplace=True, na_position='first')
        for n in id_1:
            df_TOTAL[n]=df[n].iloc[-1]
      
        
        
        var_dict['KEY']='last' 
        for n in class_combinations:
            
            # this is for '_TYPE_'. For the class variables present in this iteration, assign 1 to the corresponding code variable
            code_dict = {}
            for i, k  in zip(class_1,  code_list):
                for o in n:
                    if o==i:
                        code_dict[k]='1'
                        break
                    elif  o!=i:
                        code_dict[k]='0'
                        
            code_full=''.join(code_dict.values())   # concat all the code variables into a single string
            
            
            sort_tup=n+tuple(id_1)
            df['KEY'] =''
            df.sort_values(by=list(sort_tup), kind='stable', ignore_index=True, inplace=True, na_position='first') # this is to ensure the class variables and id are sorted correctly, 
            
            if s=='sum_wt':
                df_weighted['KEY'] =''
                df_weighted.sort_values(by=list(sort_tup), kind='stable', ignore_index=True, inplace=True, na_position='first') 
                for o in n: # For the class variables present in this iteration, create a key
                    df_weighted[o] =  df_weighted[o].fillna('') # if na is not filled with blank, the key will be blank as long as any column has nan
                    df_weighted['KEY'] = df_weighted[['KEY', o]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)
                    df_weighted[o].replace(r'^\s*$', np.nan, regex=True, inplace=True) # replace the empty space (created in the 1st step) with nan again. 
                    
                    
            for o in n: # For the class variables present in this iteration, create a key
                df[o] = df[o].fillna('') # if na is not filled with blank, the key will be blank as long as any column has nan
                df['KEY'] = df[['KEY', o]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)
                df[o].replace(r'^\s*$', np.nan, regex=True, inplace=True) # replace the empty space (created in the 1st step) with nan again. 
            df_unique = df.drop_duplicates(subset=['KEY'], keep='last') # Extract only the last to merge in the id variables
            
            if missing=='Y':
                if s=='sum_wt':
                    df_gpby = df_weighted.groupby(list(n), dropna=False).agg(var_dict).reset_index()
                
                elif s=='mean_wt':
                    
                    # find groups that has >1 element
                    non_unique=df['KEY'].value_counts() 
                    non_unique=non_unique.where(non_unique>1).dropna()
                    non_unique_list=non_unique.index.tolist()
                
                    df_gpby=df.groupby(list(n), dropna=False).agg({'KEY':'last', '_FREQ_':'count'}).reset_index()
                   
                    for k in var:
                        # Need to drop those rows that belong to groups with > 1 element and has nan. Otherwise, entire group will have nan even if some valid values
                        #df_subset=pd.concat([df[(df['KEY'].isin(non_unique_list)) & (df[[weight[0],k]].notnull().all(axis=1))], df[~df['KEY'].isin(non_unique_list)]], axis=0) 
                        df_subset=df[~((df['KEY'].isin(non_unique_list)) & (df[[weight[0],k]].isnull().any(axis=1)))]
                        mean_wt_fn_subset = lambda x: np.ma.average(x, weights=df_subset.loc[x.index, weight[0]]) 
                        df_gpby_subset= df_subset.groupby(list(n), dropna=False).agg({k: mean_wt_fn, 'KEY':'last'}).reset_index()
                        #df_gpby=pd.concat([df_gpby, df_gpby_subset[df_gpby_subset.columns.difference(df_gpby.columns)]], axis=1)
                        df_gpby=pd.merge(df_gpby, df_gpby_subset[[k, 'KEY']], how='outer', on='KEY', suffixes=('_x', ''))
                        #print(df_gpby)
                        
                elif s=='var_wt' or s=='std_wt':   
                    df_gpby = df.groupby(list(n), dropna=False).agg(var_dict).reset_index()
                    
                    for k in var:
                        variance_fn =lambda x: (DescrStatsW(x[k], weights=x[weight[0]], ddof=10).var)*10  
                        df_gpby_variance= df.dropna(subset=[k, weight[0]], how='any', axis=0).groupby(list(n), dropna=False).apply(variance_fn).reset_index()
                        df_gpby_variance.rename(columns={0: k}, inplace=True)
                        
                        if s=='std_wt':
                            df_gpby_variance[k]= np.sqrt(df_gpby_variance[k])
                            
                        df_gpby_variance['KEY']=''
                        for z in n: # For the class variables present in this iteration, create a key
                            df_gpby_variance[z] = df_gpby_variance[z].fillna('') # if na is not filled with blank, the key will be blank as long as any column has nan
                            df_gpby_variance['KEY'] = df_gpby_variance[['KEY', z]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)
                            df_gpby_variance[z].replace(r'^\s*$', np.nan, regex=True, inplace=True) # replace the empty space (created in the 1st step) with nan again. 
                               
                               
                        df_gpby_variance_merged=pd.merge(df_gpby_variance_merged, df_gpby_variance[[k, 'KEY']], how='outer', on='KEY', suffixes=('_x', ''))
                       
                    df_gpby = pd.merge(df_gpby, df_gpby_variance_merged[var + ['KEY']], how='left', on='KEY', suffixes=('_x', ''))
                    
                    
                else:
                    df_gpby = df.groupby(list(n), dropna=False).agg(var_dict).reset_index()
                     
            elif missing=='N':
                if s=='sum_wt':
                    df_gpby = df_weighted.groupby(list(n), dropna=True).agg(var_dict).reset_index()
                
                elif s=='mean_wt':
                    
                    # find groups that has >1 element
                    non_unique=df['KEY'].value_counts() 
                    non_unique=non_unique.where(non_unique>1).dropna()
                    non_unique_list=non_unique.index.tolist()
                     
                    df_gpby=df.groupby(list(n), dropna=True).agg({'KEY':'last', '_FREQ_':'count'}).reset_index()
               
                    for k in var:
                        # Need to drop those rows that belong to groups with > 1 element and has nan. Otherwise, entire group will have nan even if some valid values
                        #df_subset=pd.concat([df[(df['KEY'].isin(non_unique_list)) & (df[[weight[0],k]].notnull().all(axis=1))], df[~df['KEY'].isin(non_unique_list)]], axis=0) 
                        df_subset=df[~((df['KEY'].isin(non_unique_list)) & (df[[weight[0],k]].isnull().any(axis=1)))]
                        mean_wt_fn_subset = lambda x: np.ma.average(x, weights=df_subset.loc[x.index, weight[0]]) 
                        df_gpby_subset= df_subset.groupby(list(n), dropna=True).agg({k: mean_wt_fn, 'KEY':'last'}).reset_index()
                        #df_gpby=pd.concat([df_gpby, df_gpby_subset[df_gpby_subset.columns.difference(df_gpby.columns)]], axis=1)
                        df_gpby=pd.merge(df_gpby, df_gpby_subset[[k, 'KEY']], how='outer', on='KEY', suffixes=('_x', ''))
                      
                
                elif s=='var_wt' or s=='std_wt':   
                    df_gpby = df.groupby(list(n), dropna=True).agg(var_dict).reset_index()
                    
                    for k in var:
                        variance_fn =lambda x: (DescrStatsW(x[k], weights=x[weight[0]], ddof=10).var)*10  
                        df_gpby_variance= df.dropna(subset=[k, weight[0]], how='any', axis=0).groupby(list(n), dropna=True).apply(variance_fn).reset_index()
                        df_gpby_variance.rename(columns={0: k}, inplace=True)
                        
                        if s=='std_wt':
                            df_gpby_variance[k]= np.sqrt(df_gpby_variance[k])
                            
                        df_gpby_variance['KEY']=''
                        for z in n: # For the class variables present in this iteration, create a key
                            df_gpby_variance[z] = df_gpby_variance[z].fillna('') # if na is not filled with blank, the key will be blank as long as any column has nan
                            df_gpby_variance['KEY'] = df_gpby_variance[['KEY', z]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)
                            df_gpby_variance[z].replace(r'^\s*$', np.nan, regex=True, inplace=True) # replace the empty space (created in the 1st step) with nan again. 
                               
                               
                        df_gpby_variance_merged=pd.merge(df_gpby_variance_merged, df_gpby_variance[[k, 'KEY']], how='outer', on='KEY', suffixes=('_x', ''))
                    
                    df_gpby = pd.merge(df_gpby, df_gpby_variance_merged[var + ['KEY']], how='left', on='KEY', suffixes=('_x', ''))
                    
                    
                else:
                    df_gpby = df.groupby(list(n), dropna=True).agg(var_dict).reset_index()
             
            df_gpby['_TYPE_']=code_full
            df_gpby = pd.merge(df_gpby, df_unique[id_1], how='left', on='KEY', suffixes=('_x', ''))
            
          
            df_total_gpby= pd.concat([df_total_gpby, df_gpby], axis = 0, ignore_index=True) 
        
        
        df_total_gpby.drop(df_total_gpby.filter(regex='_x$').columns, axis=1, inplace=True, errors='ignore')
        df_total_gpby.drop(columns=['KEY'], axis=1, inplace=True, errors='ignore')
    
        df_total_gpby['_TYPE_']=pd.to_numeric(df_total_gpby['_TYPE_'], errors='coerce')
        df_total_gpby.sort_values(by=['_TYPE_'], kind='stable', ignore_index=True, inplace=True, na_position='first')
        df_total_gpby['_TYPE_']=pd.factorize(df_total_gpby['_TYPE_'])[0] + 1 # factorise starts from 0, so need to +1
        
        df_total_gpby = pd.concat([df_TOTAL, df_total_gpby], axis = 0, ignore_index=True) 
        
        if  nway=='Y':
            df_total_gpby=df_total_gpby.nlargest(1, columns=['_TYPE_'], keep='all')
       
        if s!=np.std:
            df_total_gpby['_STAT_']=s
        elif s==np.std:
            df_total_gpby['_STAT_']='std'
            
        df_final_gpby = pd.concat([df_final_gpby, df_total_gpby], axis = 0, ignore_index=True)    
 
    df_final_gpby.drop(columns=['KEY'], axis=1, inplace=True, errors='ignore')
    sort_list=['_TYPE_'] + list(reversed(class_1)) + ['_STAT_']
    df_final_gpby.sort_values(by=sort_list, kind='stable', ignore_index=True, inplace=True, na_position='first')
    #print(df_final_gpby)

    return df_final_gpby


# TestSAS_pro_summary with the below toy dataset

data = {
        
"name": ['dick', 'sam', 'sam', 'sam','susan', 'susan', 'john', 'john', 'john', 'john',np.nan],
"last_name": ['lim', 'tan', 'tan', 'lim', 'wee', 'lim', 'low', 'tan',  'tan', 'lee' , 'tan'],
"id": ['S','F', 'S','F', 'F', 'S', 'S','F', 'F','F', 'F'],
"loc": ['E','W', 'N','S', 'N', 'S', 'E','N', 'N','N', 'N'],
"sex": ['M','M', 'F','F', 'F','F', 'M','F', 'F', 'F', 'F'],
"age": [np.nan,20, 20,20, 20, 789, 234,9999, 10, 10, np.nan],
"age2":[np.nan, -123, 20,20, 20, 789, 234,9999,  np.nan, np.nan, np.nan],
'wt': [90, 10, 10, 10, 10, 10, 10, 10, 10, np.nan,  np.nan]
}


df = pd.DataFrame(data)



df=SAS_pro_summary(df, stat=['count'], class_1=[ 'name'], var=[], id_1=['sex', 'last_name'], weight=['wt'], nway='N', missing='N')
print(df)




How to Read in 1 or All Excel Sheets into a Pandas DF Using Xlwings?

                                                                   Photo by Jeff Sheldon on Unsplash One of the advantages of using Xlwings...