Sunday, 23 June 2024

Python Equivalent of SAS Merge

 

                                                    Photo by Sora Sagano on Unsplash

While Python offers several merge options like pandas.merge, pandas.concat, and join; none of them can replicate the exact same output of SAS Merge.

Some differences between SAS and Python Merge…

  1. For SAS when merging datasets with overlapping columns, it will take the column in the right-most dataset. While for Python, overlapping columns will be suffixed to distinguish them.
  2. For SAS if df_left has more rows than df_right for a merge key, the non-overlapping columns from df_right for the extra rows will be filled with the data of the last row in df_right. For Python, however, it will do a Cartesian Join (Cross Join).

The below diagrams illustrates the differences.

For SAS merge, the overlapping columns age and ht take the values from df_right for Obs 1–2. For the non-overlapping column from df_right (sales_right), Obs 3 takes the same value as Obs 2.


For Python merge, the overlapping columns age and ht are suffixed with “_left” for the columns from df_left. Also, a cartesian join is performed resulting in 3 x 2 = 6 observations.

 


Thus I have come up with a function in Python to replicate SAS Merge.



import pandas as pd

import numpy as np

 

# =============================================================================

# SOME DIFFERENCES BETWEEN SAS & PYTHON MERGE

 

# For SAS, when merging datasets with overlapping columns, it will take the column in the right-most dataset

# For Python, overlapping columns will be suffixed to distinguish them

#

# For SAS if df_left has > rows than df_right, The non-overlapping columns from df_right, for the extra rows will be filled with the data of the last row in df_right.

# But in Python, it will do a Cartesian Join (Cross Join)

# =============================================================================

 

# =============================================================================

# INSTRUCTIONS FOR SAS_merge

 

# The 1st 2 args are the left and right dfs

# The 3rd arg is the HOW of the merge. Similar to SAS merge, the options are

    # 'if df_left'

    # 'if df_right'

    # 'if df_left and df_right'

    # '' # this is the SAS merge without the If statement

    # 'if df_left NOT =df_right'

    # 'if df_right NOT =df_left'

# The 4th arg is the ind. Put 'Y' if u want the variable '_merge' (this tells which df the record is from), else put 'N'

# The 5th arg is the merge key. It is of variable length. If merging on >1 variable separate the arg by ,

# =============================================================================

 

def SAS_merge (df_left_copy, df_right_copy, how, ind, *merge_key):

    df_left=df_left_copy.copy() # this is to prevent the original df being modified in the function. Note that all df will be modified in function even if not returned.

    df_right=df_right_copy.copy() # this is to prevent the original df being modified in the function. Note that all df will be modified in function even if not returned.

   

    df_left = df_left [df_left.columns.dropna()] #Drop columns with Nan header, or else there will  be errors

    df_right = df_right [df_right.columns.dropna()]

   

    df_left_subset_merge=pd.DataFrame()

    df_right_subset_merge=pd.DataFrame()

     

    df_left['KEY']=''

    df_right['KEY']=''

   

    for col in merge_key:

        df_left[col] = df_left[col].fillna('')

        df_right[col] = df_right[col].fillna('')

      

    for col in merge_key:

        df_left['KEY'] = df_left[['KEY', col]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)

        df_right['KEY'] = df_right[['KEY', col]].apply(lambda row: ''.join(row.values.astype(str)), axis=1)

       

    

    if how=='if df_left' or how=='if df_right' or how=='if df_left and df_right' or how=='':

        df_left.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

        df_right.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

             

        #check_df_left = df_left['KEY'].to_list()

        #check_df_right = df_right['KEY'].to_list()

        #common_key=list(set(check_df_left) & set(check_df_right)) # find the unique key that exists in both df

       

        col_common =list(np.intersect1d(df_left.columns, df_right.columns))

        col_common.remove('KEY')

        for col in merge_key:

            col_common.remove(col)

       

        col_missing_right = df_right.columns.difference(df_left.columns).tolist() # find the columns in df_right that are missing from df_left

        col_missing_left = df_left.columns.difference(df_right.columns).tolist() # find the columns in df_left that are missing from df_right

       

        # find the common key in both df and their number of occurrence by inner merge

        check_df_left=pd.DataFrame(df_left.value_counts(subset=['KEY'], dropna=True)) # KEY becomes the index in the df

        check_df_right=pd.DataFrame(df_right.value_counts(subset=['KEY'], dropna=True))

       

        merge_check=pd.merge(check_df_left, check_df_right, how='inner', left_index=True, right_index=True).reset_index(drop=False)

        merge_left=merge_check[(merge_check['0_x']>=merge_check['0_y']) & (merge_check['0_y']>1)] #'0_x' is the num of occurrence in left df. issues occur if '0_y'>1 as Python does a cartesian merge

        merge_right=merge_check[(merge_check['0_x']<=merge_check['0_y']) & (merge_check['0_x']>1)]

           

 

        for c in merge_left['KEY'].to_list():

       

            df_left_key=df_left[df_left['KEY']==c].shape[0]

            df_right_key=df_right[df_right['KEY']==c].shape[0]

       

            #row_list=merge[merge['KEY']==c].index.tolist()

            df_left_subset=df_left[df_left['KEY']==c].reset_index(drop=True)

            df_left=df_left[df_left['KEY']!=c]

           

            df_right_subset=df_right[df_right['KEY']==c].reset_index(drop=True)

            df_right=df_right[df_right['KEY']!=c]

           

            # for overlapping columns fill df_left with values from df_right

            #df_left_subset[list(np.intersect1d(df_left_subset.columns, df_right_subset.columns))]=df_right_subset[list(np.intersect1d(df_left_subset.columns, df_right_subset.columns))]

            for col in col_common:

                for i in range (0, df_right_key):

                    df_left_subset.iloc[i, df_left_subset.columns.get_loc(col)]=df_right_subset.iloc[i, df_right_subset.columns.get_loc(col)]

           

            

            for col in col_missing_right:

                df_left_subset[col]=df_right_subset[col] # for this to work, both df must have same index

                # for SAS if df_left has > rows than df_right. The columns from df_right, for the extra rows will be filled with the data of the last row in df_right.

                for i in range (df_right_key, df_left_key):

                    df_left_subset.iloc[i, df_left_subset.columns.get_loc(col)]=df_left_subset.iloc[i-1, df_left_subset.columns.get_loc(col)]

       

            df_left_subset_merge = pd.concat([df_left_subset_merge, df_left_subset], axis = 0, ignore_index=True)

            

     

        for c in merge_right['KEY'].to_list():

           

            df_left_key=df_left[df_left['KEY']==c].shape[0]

            df_right_key=df_right[df_right['KEY']==c].shape[0]

       

            #row_list=merge[merge['KEY']==c].index.tolist()

            df_left_subset=df_left[df_left['KEY']==c].reset_index(drop=True)

            df_left=df_left[df_left['KEY']!=c]

           

            df_right_subset=df_right[df_right['KEY']==c].reset_index(drop=True)

            df_right=df_right[df_right['KEY']!=c]

           

            

            for col in col_missing_left:

                df_right_subset[col]=df_left_subset[col] # for this to work, both df must have same index

                # for SAS if df_right has > rows than df_left. The columns from df_left, for the extra rows will be filled with the data of the last row in df_left.

                for i in range (df_left_key, df_right_key):

                    df_right_subset.iloc[i, df_right_subset.columns.get_loc(col)]=df_right_subset.iloc[i-1, df_right_subset.columns.get_loc(col)]

       

            df_right_subset_merge = pd.concat([df_right_subset_merge, df_right_subset], axis = 0, ignore_index=True)

 

       

                    

 

        if how=='if df_left':

            merge = pd.merge(df_left, df_right, how='left', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

            col_ls=[col[:-5] for col in merge.columns if col.endswith('_left')] 

            for col in col_ls:

                merge.loc[merge['_merge']=='left_only', col]=merge.loc[merge['_merge']=='left_only', col+'_left']

       

        elif how=='if df_right':

            merge = pd.merge(df_left, df_right, how='right', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

       

        elif how=='if df_left and df_right':

            merge = pd.merge(df_left, df_right, how='inner', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

           

        elif how=='':

            merge = pd.merge(df_left, df_right, how='outer', on=merge_key, suffixes=('_left', ''), sort=True, indicator=True)

            col_ls=[col[:-5] for col in merge.columns if col.endswith('_left')] 

            for col in col_ls:

                merge.loc[merge['_merge']=='left_only', col]=merge.loc[merge['_merge']=='left_only', col+'_left']

               

        merge = pd.concat([merge, df_left_subset_merge, df_right_subset_merge], axis = 0)

        merge = merge.loc[:, ~merge.columns.str.startswith('KEY')]

        merge ['_merge'].fillna('both', inplace=True) # these are the rows from df_left_subset_merge, df_right_subset_merge

        merge.drop(merge.filter(regex='_left$').columns, axis=1, inplace=True, errors='ignore')

        if ind=='N':

            merge.drop(['_merge'], axis=1, inplace=True, errors='ignore')

        merge.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

       

 

 

    elif how=='if df_left NOT =df_right' or how=='if df_right NOT =df_left':

           

        df_left_subset_merge = df_left[~df_left['KEY'].isin(df_right['KEY'])]

        df_right_subset_merge = df_right[~df_right['KEY'].isin(df_left['KEY'])]

        merge = pd.concat([df_left_subset_merge, df_right_subset_merge], axis = 0)

        merge = merge.loc[:, ~merge.columns.str.startswith('KEY')]

        if ind=='N':

            merge.drop(['_merge'], axis=1, inplace=True, errors='ignore')

        merge.sort_values(by=list(merge_key), kind='stable', ignore_index=True, inplace=True)

 

    return merge

 
# Toy Dataset to Test Python Merge, Join, Concat vs SAS Merge

data = {      

"name": ['dick_both', 'sam_both', 'sam_both', 'sam_both','cat_both','susan_both', 'susan_both', 'john_both', 'john_both', 'tom_left', 'tom_left'],

"age": [20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20],

"ht": [200, 200, 200, 200, 200, 200, 200,  200, 200,  200, 200],

"sales_l": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

}

 

left = pd.DataFrame(data)

 

data = {

      "name": ['dick_both', 'sam_both', 'sam_both','cat_both', 'cat_both', 'susan_both', 'john_both', 'john_both', 'john_both', 'harry_right', 'harry_right' ],

      "age": [50, 50, 50, 50,50, 50, 50, 50, 50, 50, 50],

      "ht": [5, 5, 5, 5,5, 5, 5,  5, 5, 5,  5],

      "sales_r": [51, 52, 53, 54,55, 56, 57, 58, 59, 60, 61]

        }

 

right = pd.DataFrame(data)

 

 

merge = pd.merge(left, right, how='right', on=['name'], suffixes=('_left', ''), sort=True)

print('PYTHON MERGE')

print(merge)

 

concat=pd.concat([left, right], axis=1,join='inner')

print('PYTHON CONCAT')

print(concat)

 

join=left.join(right, how='left', lsuffix='_left', rsuffix='')

print('PYTHON JOIN')

print(join)  

merge=SAS_merge (left, right,'if df_left', 'N', 'name')

 

print('SAS MERGE')

print(merge)

No comments:

Post a Comment

How to Read in 1 or All Excel Sheets into a Pandas DF Using Xlwings?

                                                                   Photo by Jeff Sheldon on Unsplash One of the advantages of using Xlwings...